Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.
Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas y separados una distancia es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:
Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas y separados una distancia es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:
- es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
- es la constante de la Gravitación Universal.
Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán. El valor de esta constante de Gravitación Universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión.
Relación con las Leyes de Kepler[editar]
Las Leyes de Kepler eran una serie de tres leyes empíricas que describían el movimiento de los planetas a través de las observaciones existentes. Aunque éstas describían dichos movimientos, los motivos de por qué éstos eran así o qué los causaban permanecían desconocidas tanto para Kepler como para sus coetáneos. Sin embargo, éstas supusieron un punto de partida para Newton, quien pudo dar una formulación matemática a dichas leyes, lo cual junto con sus propios logros condujeron a la formulación de la ley de la Gravitación Universal. En especial, a través de dicha ley Newton pudo dar la forma completa a la Tercera ley de Kepler, que describe que los cuadrados de los periodos de las órbitas de los planetas son proporcionales a los cubos de sus distancias al Sol. Es decir, que los planetas más alejados del Sol tardan más tiempo en dar una vuelta alrededor de éste.
Forma vectorial[editar]
Aunque en la ecuación (vectorial, para lo cual únicamente hay que tener en cuenta las posiciones donde se localizan ambos cuerpos, referencia dos a un sistema de referencia cualquiera. De esta forma, suponiendo que ambos cuerpos se encuentran en las posiciones , la fuerza (que será un vector ahora) vendrá dada por
) se ha detallado la dependencia del valor de la fuerza gravitatoria para dos cuerpos cualesquiera, existe una forma más general con la que poder describir completamente dicha fuerza, ya que en lugar de darnos únicamente su valor, también podemos encontrar directamente su dirección. Para ello, se convierte dicha ecuación en forma Masa inercial y masa gravitatoria: principio de equivalencia[editar]
Otro gran problema que traía consigo esta teoría (y que sirve como uno de los postulados desde los que se desarrolla la Relatividad General) es el conocido como principio de equivalencia. Éste aboga por el hecho de que en la Teoría de la Gravitación Universal se utiliza una cantidad propia de cada cuerpo que es la que origina la fuerza de la gravedad, su masa. Aunque aquí se ha relacionado directamente con la masa propia de cada cuerpo, ésta realmente podría ser definida como una masa gravitacional, en contraposición con la masa utilizada en la segunda ley de Newton, que habla sobre la inercia de los cuerpos, , y que podría ser llamada masa inercial. En la práctica, no existe ninguna ley, principio o hecho que establezca que ambas masas son, en efecto, la misma masa, como se ha supuesto en toda la descripción realizada (únicamente se conoce que ambas son prácticamente iguales con una gran precisión). Este hecho que traería una gran importancia, puesto que de no ser las mismas, la aceleración que experimenta un cuerpo dejaría de ser independiente de su masa por ejemplo, no ha podido ser resuelto de una manera efectiva, dando lugar al mencionado principio de equivalencia.
No hay comentarios:
Publicar un comentario